Skip to main content

Principles of Inheritance and Variation class 12 Notes Biology

 CBSE Class 12 Biology Revision Notes Chapter 5 Principles of Inheritance and Variation

Genetics

Genetics is the study of principles and mechanism of heredity and variation. Gregor Johann Mendel is known as ‘father of Genetics’.

Inheritance 

Inheritance is the process by which characters are passed on from parent to progeny. It is the basis of heredity.

Variations

Variation is the degree by which progeny differ from their parents. Variation may be in terms of morphology, physiology, cytology and behavioristic traits of individual belonging to same species.

Variation arise due to-

-Reshuffling of gene/chromosomes.

-Crossing over or recombination

-Mutation and effect of environment.


Mendel’s Law of Inheritance: 

Mendel conducted hybridization experiments on garden pea (Pisum sativum) for seven years and proposed the law of inheritance in living organisms.

Selection of pea plant:

 The main reasons for adopting garden pea (Pisum sativum) for experiments by Mendel were –

•Pea has many distinct contrasting characters.

•Life span of pea plant is short.

•Flowers show self-pollination, reproductive whorls being enclosed by corolla.

•It is easy to artificially cross-pollinate the pea flowers. The hybrids thus produced were fertile.


Inheritance of one gene (Monohybrid cross)

Mendel crossed tall and dwarf pea plant and collected all the seeds obtained from this cross. He grew all the seeds to generate plants of first hybrid generation called F1 generation. He observed that all the plants are tall. Similar observation was also found in other pair of traits.

•Mendel self-pollinated the F1 plants and found that in F2 generation some plants are also dwarf. The proportion of dwarf plants is 1/4th and tall plants of 3/4th.

•Mendel called the ‘factors’ that passes through gametes from one generation to next generation. Now a day it is called as genes (unit of inheritance).

•Genes that code for a pair of contrasting traits are known as alleles.

•Alphabetical symbols are used to represent each gene, capital letter (TT) for gene expressed in F1 generation and small letter (tt) for other gene.

•Mendel also proposed that in true breeding tall and dwarf variety allelic pair of genes for height is homozygous (TT or tt). TT, Tt or tt are called genotype and tall and dwarf are called phenotype.

•The hybrids which contain alleles which express contrasting traits are called heterozygous (Tt).

•The monohybrid ratio of F2 hybrid is 3:1(phenotypic) and 1:2:1(genotypic).

Test cross :-

Test cross is the cross between an individual with dominant trait and a recessive organism in order to know whether the dominant trait is homozygous or heterozygous.

Principle or Law of Inheritance


Based on observations of monohybrid cross, Mendel proposed two law of inheritance-

1. Law of dominance– states that –


a. Characters are controlled by discrete units called factors.
b. Factors always occur in pair.
c. In a dissimilar pair of factors one member of pair dominate the other.

2. Law of Segregation- 

alleles do not blends and both the characters are recovered during gametes formation as in F2 generation. During gametes formation traits segregate (separate) from each other and passes to different gametes. Homozygous produce similar kinds of gametes but heterozygous produce to different kinds of gametes with different traits.


***Incomplete dominance***

It is a post Mendelian discovery. Incomplete dominance is the phenomenon of neither of the two alleles being dominant so that expression in the hybrid is a fine mixture or intermediate between the expressions of two alleles.

In snapdragon (Mirabilis jalapa), there are two types of pure breeding plants, red flowered and white flowered. On crossing the two, F1 plants possess pink flowers. On selfing them, F2 generation has 1red: 2 pink: 1white. The pink flower is due to incomplete dominance.


Co-dominance

It is the phenomenon of two alleles lacking dominance-recessive relationship and both expressing themselves in the organism.

Human beings, ABO blood grouping are controlled by gene I. The gene has three alleles IA, IB and i. Any person contains any two of three allele IA, IB are dominant over i.

The plasma membrane of the red blood cells has sugar polymers that protrude from its surface and the kind of sugar is controlled by the gene.

When IA and IB are present together, both express their own types of sugars because of co-dominance.

Multiple Alleles-

They are multiple forms of a mandelian factor or gene which occur on the same gene locus distributed in different organisms in the gene pool with an organism carrying only two alleles and a gamete only one allele. ABO blood grouping also provides a good example of multiple alleles.

Inheritance of Two genes (Dihybrid Cross)

A cross made to study simultaneous inheritance of two pairs of mendelian factors of genes.


Law of independent Assortment –

 The law states that ‘when two pairs of traits are combined in a hybrid, segregation of one pair of characters is independent of the other pair of characters’.In Dihybrid cross two new combinations, round green & wrinkled yellow are formed due to independent assortment of traits for seed shape i.e round, wrinkled and seed color i.e , yellow and green


The ratio of 9:3:3:1 can be derived as a combination series of 3 yellow: 1 green, with 3 round : 1 wrinkled. This derivation can be written as follows: (3 Round : 1 Wrinkled) (3 Yellow : 1 Green) = 9 Round, Yellow : 3 Wrinkled, Yellow: 3 Round, Green : 1 Wrinkled, Green

Chromosomal Theory of Inheritance-

Chromosome as well as gene both occurs in pair. The two alleles of a gene pair are located on the same locus on homologous chromosomes.

Sutton and Boveri argued that the pairing and separation of a pair of chromosomes would lead to segregation of a pair of factors (gene) they carried.

Sutton united the knowledge of chromosomal segregation with mendelian principles and called it the chromosomal theory of inheritance.

Linkage and Recombination-

When two genes in a Dihybrid cross were situated on same chromosome, the proportion of parental gene combination was much higher than the non-parental type. Morgan attributed this due to the physical association or the linkage of the two genes and coined the linkage to describe the physical association of genes on same chromosome.

The generation of non-parental gene combination during Dihybrid cross is called recombination. When genes are located on same chromosome, they are tightly linked and show very low recombination.

Sex Determination-

Henking in 1891 observed a trace of specific nuclear structure in few insects. He also observed that this specific nuclear structure is located on 50% of sperms only. He called this x body. He was not able to explain its significance.

Latter it was observed that the ovum that receive the sperms with x body become female and those not becomes males, so this x body was called as sex chromosome and other chromosomes are called autosomes.

In humans and other organisms XY types of sex determination is seen but in some insects like Drosophila XO type of sex determination is present.

In both types of sex determination, male produce two different types of gametes either with or without X chromosome or some with X chromosome and some with Y chromosomes. Such types of sex determination are called male heterogamety.

In birds ZW type of sex determination is present., two different types of gametes are produced by females in terms of sex chromosomes; this type of sex determination is called female heterogamety.

Sex determination in human beings XY type. Out of 23 pairs of chromosomes, 22 pairs are exactly same in male and female called autosomes. A pair of X chromosome is present in female and XY in male. During spermatogenesis, male produce two type of gametes (sperms), 50% carries Y chromosome and remaining 50% contain X chromosome. Female, produce only one kind of gamete (ovum) having X chromosomes only.

When sperm having Y chromosome the sex of baby is male and when sperm carrying X chromosome fertilize the egg, the sex of baby is female.

Mutation -

Mutationis a phenomenon which results in alternation of DNA sequence and consequently results in the change in the genotype and phenotype of an organism. The mutations that arise due to due to change in single base pair of DNA are called point mutation e.g Sickle cell anaemia.

Pedigree Analysis-

The analysis of traits in several of generation of a family is called the pedigree analysis. The inheritance of a particular trait is represented in family tree over several generations. It is used to trace the inheritance of particular trait, abnormality and disease.

Genetic Disorders

Broadly, genetic disorders may be grouped into two categories – Mendelian disorders and
Chromosomal disorders.

They are transmitted as the affected individual is sterile.This is always dominant in nature.

Mandalian disorder includes-

a. Haemophilia- 

Sex linked recessive disease in which, in an infected individual, a minor cut leads to non-stop bleeding. Heterozygous female (carrier) can transmit the disease to their son. The possibility of a female becoming a haemophilic is extremely rare because mother of such a female has to be at least carrier and the father should be haemophilic (unviable in the later stage of life).

b. Sickle cell anemia-

An autosome linked recessive trait in which mutant haemoglobin molecules undergo polymerization under low oxygen tension causing change in shape of the RBC from biconvex disc to elongated sickle like structure. The defect is caused by the substitution of Glutamic acid (Glu) by Valine (Val) at the sixth position of the beta globin chain of the haemoglobin molecule. The substitution of amino acid in the globin protein results due to the single base substitution at the sixth codon of the beta globin gene from GAG to GUG.

Chromosomal Disorders-

Failure of segregation of chromatids during cell division results in loss or gain of chromosome called aneuploidy. The failure of cytokinesis leads to two sets of chromosome called polyploidy.

a. Down’s Syndrome–

 Due to presence of additional copy of the chromosome number 21. The affected individual is short statured with small rounded head, furrowed tongue and partially opened mouth. Mental development is retarded.

b. Klinefleter’s Syndrome– 

Due to presence of an additional copy of X-chromosome (XXY). Such persons have overall masculine development however, the feminine development (development of breast, i.e., Gynaecomastia) is also expressed. They are sterile.

c. Turner’s Syndrome–

Caused due to the absence of one of the X chromosome. 45 with XO, such females are sterile as ovaries are rudimentary. They lack secondary sexual characters.

Comments

Popular posts from this blog

Chapter 1 The Living World class 11th biology Notes

Class 11th biology chapter 1 The Living World Full chapter notes  Scrol down to Download link 🔗  What is 'Living' ? 'Living' is something that is alive, something that can grow, move, reproduce, respire and carry out various cellular activities. When it comes to the humans, it is all the more difficult to define the living state. We observe patients lying in the coma in hospitals virtually supported by the machines which replace heart and lungs. The patient has no self consciousness. Are such patients who never come back to normal life, living or non-living?  Such person exhibit a complete absence of wakefulness and is unable to consciously feel, speak, hear or move . Such a person is called brain dead but as the body system is functioning, the person is considered as living. Biodiversity   The Diversity in the living world or biodiversity is the occurrence of the variety of life forms. Each different kinds of plant, animal or microorganisms represents a...

Class 10th Science Digestive system in Humans with NCERT solutions

Digestion: The Intricate Journey Within the Human Body Introduction Digestion is a remarkable process that occurs within the human body, allowing us to extract vital nutrients from the food we consume. From the moment food enters our mouths to its final journey through the digestive system, numerous organs and processes work together harmoniously. In this comprehensive blog, we will explore the intricacies of digestion, unraveling the fascinating mechanisms that enable our bodies to break down and absorb nutrients from the foods we eat. Join us on this journey through the digestive system, where we will discover the marvels of the human body's ability to transform food into energy. The Mouth: Where Digestion Begins  Our journey commences in the mouth, where digestion begins with the process of mastication. Through the actions of the teeth, tongue, and salivary glands, food is broken down into smaller pieces, forming a bolus. Saliva, with its enzymes, initiates the chemical breakdow...

What is Biodiversity ?

BIODIVERSITY THE BIOLOGICAL DIVERSITY OR BIODIVERSITY IS THE VARIETY OF LIFE AND DIVERS COLLECTIVELY TO VARIATION AT ALL LEVELS OF BIOLOGICAL ORGANISATION. The biodiversity exist not only at the spacies level but at all levels of biological organisation ranging from macro molecules within Cells  to biomes. The biodiversity is popularised by a sociobiologist Edward Wilson to describe the combine diversity at all the levels of biological organisation. Levels of biodiversity: - diversity is commonly considered at three different levels:- A. Genetic diversity B. Species diversity C. Ecosystem or Ecological diversity A. Genetic diversity:- The Genetic diversity refers to any variation in the nuclear jeans chromosomes or genome of organisms. This is the fundamental currency of diversity and the basis of all other organismal diversity. Genetic diversity is the sum total of genetic information, contained in the genes of individuals of plants, animals and microorgan...